Category Archives: Piper Aircraft

Piper wins European certification for Autoland system on M600/SLS

Piper Aircraft has gained European approval for its M600/SLS equipped with the Garmin Autoland-based Halo safety system.

Delivery of the initial Halo-equipped aircraft to a European customer will take place late in the second quarter, says the Vero Beach, Florida-based airframer.

Continue reading Piper wins European certification for Autoland system on M600/SLS

2019 Piper M600 at a Glance

Piper’s M600 is ideal for an owner-pilot transitioning out of a piston-engine-powered aircraft or for a corporate flight department needing short-hop or short-field supplemental lift.

In a little less than three years since the model’s introduction, Piper Aircraft has delivered 99 of these single-engine, six-seat turboprops. The $2.994 million airplane builds on Piper’s M-series fuselage, which dates back to the company’s piston-engine twin Navajo of the 1960s and its now-discontinued line of Cheyenne twin turboprops.

The M600 is one of three M series aircraft currently in production. (The others are the piston-powered M350, formerly known as the Malibu, and the M500 turboprop, formerly called the Meridian.) As the accountants would say, the fuselage is fully amortized, with development costs having been paid down back in the days when people smoked in airplanes. 

No one is going to call the inside of this airplane voluminous: the cabin interiors for all M Class Pipers measure 12 feet, 4 inches long; 4 feet, 2 inches wide; and 3 feet, 11 inches tall. Take a peek behind the pilot and copilots to the club-four configuration of facing passenger seats. If Procrustes had had an airplane, this would be it. Yes, you could throw four people back there, but you’d probably be accused of inhumane treatment. (To be fair, the same knock applies to several other single-engine turboprops and light jets). Not even the fresh, jet-like interior styling can compensate for going hip-to-hip, knee-to-knee with your fellow man. 

For many missions, though, that’s not an option: an M600 with a full bag of gas (270 gallons) has a sparse remaining available payload of just 422 pounds, barely enough for the pilot up front and one passenger and a small dog riding in the back. Still, on runs the length of Mackinac Island, Michigan to Chicago (269 nautical miles) you could conceivably go seats full in an M600.

2019 Piper M600 at a Glance 

  • Base price: $2.994 million
  • Crew: 1-2 
  • Passengers: 4–5
  • Maximum cruising speed: 274 knots 
  • Range: 1,658 nm (no reserves) 
  • Fuel capacity: 270 gal
  • Maximum takeoff weight: 6,000 lb 
  • Takeoff distance: 2,635 ft 
  • Landing distance: 2,659 ft
  • Engine: Pratt & Whitney Canada PT6A- PT6A-42A, 600 shp 
  • Avionics: Garmin G3000 

Source: Piper & BJTOnline

Smooth Operator: A Brief Look at the Single-Engine PT6A-42A Powered Piper M600

Piper’s latest single-engine turboprop is classy, fast and proving an appealing option for owners wanting that bit more. John Absolon reports.

As first reported in Flying Australia here

The latest in the PA-46 line of aircraft that includes the -310P Malibu, -350P Malibu Mirage and -500TP Malibu Meridian, the M600 continues Piper’s success with high performance singles.

During a demonstration tour of the M600 in Australia, Australian Flying  was fortunate enough to have the opportunity to fly the demonstration aircraft when it visited Archerfield.

Piper M600 taxying at Archerfield. (John Absolon)

The demonstration flight included a flight to the Darling Downs and back at 10,000 feet while truing out at a respectable 240KTAS. This flight ably exhibited the M600’s ability to be used as an executive transport aircraft or family high performance touring aircraft seating six adults in comfort.

Looking it over

This particular aircraft had been fitted with the optional five-bladed composite propeller, which provided smooth performance with a marginal increase in thrust and therefore performance over the standard four-bladed Hartzell propeller. That extra blade also means a slightly smaller diameter and therefore increased ground clearance.

This was the first striking feature I noticed as I walked up to the aircraft outside Archerfield’s Jet Base hangar. With the PA-46’s long nose accommodating the 600 horsepower flat rated PT6A-42A, the aircraft looks similar to the older models until you look much closer.

The M600 has a totally new designed wing from previous PA-46 models that results in reduced drag while being able to carry a total of 996 litres of Jet A-1 in two internal wing tanks.

Each wing leading edge is equipped with pneumatic boots for de-icing and along with a small LED light on the fuselage side below each cockpit window to enable the pilot to observe if any ice is present at night. The vertical tail and horizontal tailplane are also similarly equipped with leading edge boots.

Venturing inside

Entry into the Piper M600’s cabin is via a single two-section door located at the rear left side of the cabin. The bottom section when lowered, houses the stairs for boarding while the locking mechanism is in the top sill. Integral within this lower door are the air ducts to aft cabin.

Once inside, the rear of the M600’s cabin has four seats in pairs facing each other just aft of the main spar that protrudes slightly on the floor.

All rear cabin seats have access to emergency oxygen masks, which are housed in a drawer under each seat. They are the airliner style nose and mouth mask. The two front seats have EROS quick-donning masks located in their boxes behind each seat facing inwards towards the access-way into the cockpit.

Moving forward into the cockpit is not without some difficulty. For the larger pilots amongst us, the cabin ceiling is quite low and after bending over and then lifting one foot over the main spar, you are able to slide forward into the cockpit seats. Once seated the flight deck is very comfortable with all controls falling easily to view and hand without effort without any extended reaching. Similarly, the view over the long nose is not limiting for all operations.

Above the windscreen is located the main switch panel with mainly electrical, avionic master and other systems switches nearest to the command pilot on the left side. This may pose problems for those pilots using multi-focal glasses looking upwards.

The five screens of the Garmin G3000 GNSS/SBAS Avionic System dominate the main area of the panel. The visible components of the Garmin G3000 system comprise three main display screens and two GTC 570 Touchscreen Controllers.
The three main screens display most of the information required for IFR flight with the two outboard screens primarily displaying the Primary Flight Display (PFD) information using vertical tape displays of airspeed, altitude and VSI with a full 360 compass rose at the bottom.

The centre Multi Function Display (MFD) screen shows the engine indications vertically on the left with the moving map on the major area of the display. Alongside these primary engine indications are the ancillary indictors for cabin pressure, electrical loads, pitch trim, flap and landing gear.

The MFD also displays the Electronic Flight Bag using the appropriate Jeppesen charts. Below the centre MFD screen, are the twin touch-screen controllers. Each screen allows the pilot to enter the required frequencies on either of the twin VHF radios, transponder codes, navigation waypoints as part of a flight plan, control the charts selected on the MFD, allows the selection of various aircraft systems displays, accesses satellite weather information as well as planning aircraft performance. They truly are the control heart of the aircraft.

Outboard to the left of the pilot’s PFD is the Aspen Avionics standby instruments. This consists of a single flat panel colour display of attitude and heading with tape airspeed and altitude indications.

Situated below these display controllers are the engine controls consisting of the power lever, condition lever and the manual pitch trim wheel. To my liking, the power lever is mounted a little too low and sits just slightly lower than the height of the front seat bases. This posed a slight problem later during the flight.

Located either side of the centre touch-screen controllers are the landing gear switch to the left and the three-position (up, t/o and lnd) flap switch to the right. Outboard on the left, are the various engine bleed air controls and the air-conditioning.
The various Auto-flight mode controls are located above the centre MFD. These control the heading bug, navigation course (CRS) selector, flight director On/Off, altitude selector, yaw damper and vertical speed selector (V/S).

Flying the beast

Our flight was planned to depart YBAF on an IFR flight plan at 10,000 feet for a short flight up to Warwick on the southern Darling Downs and back to Archerfield.

After checking that all the electrical and bleed controls were selected appropriate for an engine start, annunciator lights checked, the battery voltage was checked sufficient for an internal power start. After checking that the fuel pumps were selected on MAN, L and R fuel pump messages showed on, the ignition switch selected to man and the prop area was clear, a start cycle was commenced.

Selecting the start mode to auto, lifting the cover and pushing start there was an immediate whirring sound and the Ng % began to increase quite quickly. As it passed 13%, fuel is introduced to the engine by advancing the Condition Lever to run. The main limitation that we were looking for on the start, was a maximum of 1000°C, which is limited for just five seconds.
The only other limit that needs to be observed is that the starter has disengaged above 56% Ng.

While waiting for the obligatory warm up and checking of engine parameters, the avionics were selected on and the relevant weight and fuel data were entered or confirmed from fuel onboard and the flight plan route entered into the G3000, we were virtually now ready for taxy.

Of course the most important item for flight in this type of aircraft around SE QLD, making sure the air conditioning was selected on. Immediately cooling air was felt coming from the air outlets making for a comfortable flying environment.

Taxying the M600 required little extra power with our light weight, and the M600 quickly accelerated to a comfortable taxying speed. With the reversing propeller, taxy speed was easily controlled not by riding the wheel brakes, but by pulling the power lever back to the Beta position: zero pitch.

This is achieved by pulling the power lever slightly up and aft of the idle detent. Only momentary selections were required to control the speed before returning the power lever back to idle as we taxied out to Archerfield’s Runway 10.

Having a turbine power unit doesn’t negate the requirement for a propeller check. After entering the run-up bay and parking the brakes, the power lever was advanced to 1900 RPM for a propeller governor check followed by a reverse and Beta lock-out test.

After all the other normal pre-take-off actions, we were now to ready to move to the holding point, obtain our airways clearance and aviate.

With the flaps set to the T/O position, the power lever was advanced to around 1500 psi TRQ and the M600 accelerated rapidly towards an initial rotate speed of 85 KIAS. I found maintaining the centerline relatively easy with the powerful rudder design of the aircraft and direct nose-wheel steering at lower speeds.

@MartinAviation (On Instagram): “Some TLC for this beautiful machine.”

The back pressure required at lift-off was a little higher than I expected, but provided positive response.

Initial obstacle clearance climb out speed of 95 KIAS is quickly achieved and after the gear and flaps had been retracted and the circuit area cleared, I accelerated the aircraft to a cruise climb speed of 145 KIAS at 1500 fpm. Best rate of climb is achieved at 122 KIAS.

During the climb, we only needed to monitor the engine’s limits in Torque, ITT and Ng. The pressurization was being looked after for us automatically as we climbed towards our cruising level of 10,000 feet.